Интересные и нужные сведения о строительных материалах и технологиях. Определение объема водохранилища с учетом потерь стока

Водные богатства, которыми столь обильна наша страна, распределены по её территории не слишком равномерно.


В некоторых местностях наблюдается избыток водных ресурсов, в других же, наоборот, ощущается постоянный недостаток пресной воды. Но особенно чувствительными для хозяйственной деятельности являются сезонные колебания уровня рек. Чтобы снизить их влияние и сделать речной сток более равномерным, в предыдущем столетии была создана обширная сеть водохранилищ – искусственных водоёмов различной вместимости.

Что такое водохранилище?

Как понятно из названия, водохранилище – это искусственное сооружение, специально предназначенное для хранения воды. По своему размеру оно вполне сравнимо с крупным или средним озером: подавляющее большинство водохранилищ вмещают более миллиона кубометров воды, а крупнейшие из них имеют объём, превышающий 500 миллионов кубометров.

Они создаются, как правило, в путём перегораживания русла реки плотиной. Существуют, кроме того, водохранилища озёрного типа, когда избыток воды сбрасывается в озеро, а затем по мере необходимости поступает оттуда в речную систему или систему каналов.

Вода, находящаяся в водохранилище, не пребывает в полной неподвижности, как в озере, и сохраняет поступательное движение речного течения, однако оно существенно замедлено по сравнению с рекой. Кроме того, для водоёмов этого типа характерными являются:

— значительные сезонные колебания уровня воды, который повышается весной и осенью, постепенно снижаясь в течение зимнего и летнего сезонов;

— более холодная вода, чем в озёрах, из-за непрекращающегося течения;

— замерзание мелких водохранилищ раньше, а крупных – позже рек, причём таяние льда наблюдается позже, чем у рек, и в тех, и в других случаях;

Помимо чаши, в состав любого водохранилища обязательно входит дамба (плотина), которая устанавливается поперёк течения реки, а также станция очистки воды. Глубина дна возле дамбы, как правило, намного больше, чем возле противоположного дамбе берега.

Для чего нужны водохранилища?

В настоящее время водохранилища существуют во многих странах мира и на всех континентах, кроме Австралии.


Необходимость в них вызвана сезонными колебаниями уровня речной воды. В нашей стране во время весеннего половодья по руслам рек протекает, в зависимости от региона, до 70% общегодового стока речных вод.

В зимнюю и летнюю , напротив, ощущается резкий недостаток воды в реке, причём именно тогда, когда она необходима. Строительство водохранилищ позволило решить эту проблему: избыточная вода аккумулируется в водохранилище, а затем постепенно сбрасывается в реку, чем поддерживается её более-менее постоянный уровень.

Наличие водохранилищ оказывает позитивное влияние на хозяйственную деятельность человека. С их помощью:

— снижается риск наводнений, затопления жилых домов, сельхозугодий, промышленных предприятий и т.д.;

— улучшаются условия для плавания речного транспорта, появляется возможность эксплуатации крупных глубоководных судов, более рентабельных, чем мелкие;

— создаются каскады гидроэлектростанций для выработки дешёвой электроэнергии без загрязнения среды;

— создаются рыбоводческие хозяйства для разведения ценных пород речной рыбы;

— увеличивается пространство рекреационных зон.

В то же время существуют и негативные стороны создания водохранилищ, которые выражаются в нарушении сложившихся экосистем, затоплении большого количества пахотных земель, иногда даже с населёнными пунктами, из-за чего приходится переселять людей, в заболачивании территорий, расположенных выше плотины по течению реки и т.д.

Водохранилища: история и современность

Необходимость в строительстве водохранилищ человечество испытывало с тех пор, как вокруг оседлых поселений хлебопашцев начали складываться первые государства. Небольшие водохранилища существовали ещё в Древнем Египте: в них земледельцы запасали воду во время разлива Нила, а затем понемногу расходовали для орошения земель. Водохранилища существовали в древних Китае и Индии, а затем в средневековой Европе. Но лишь с приходом века пара и электричества энергию течения рек стали использовать в промышленном производстве.


Наибольшее число водохранилищ, существующих в настоящее время, были построены в 50-60-е годы ХХ века. Их сооружение продолжалось и позже, но уже не так активно. Сегодня во всём мире существует около 30 000 водохранилищ, общий объём воды в которых достигает 6 000 кубических километров.

В хозяйственной деятельности используется порядка 3500 кубических километров воды – количество, примерно равное десятой доле суммарного годового стока всех рек мира. При этом затоплению подверглись территории общей площадью до 350 000 квадратных километров.

Водохранилища представляют собой искусственные объекты, они созданы при возведении водонапорных конструкций (плотин), устанавливаемых в долинах крупных рек, чтобы накопить и сохранить большие объемы воды, они решают ряд таких проблемы как:

  • Развитие гидроэнергетики;
  • Водоснабжение;
  • Развитие судоходства;
  • Хозяйственное орошение;
  • Борьба с наводнениями;
  • Благоустройство территории.

Бывают озерного и речного типа. На территории России построено много водохранилищ (из них 41 - крупнейшие, 64 - крупные, 210 - средние и 19о7 - малые), большинство во второй половине ХХ века, некоторые из них входят в число самых больших водохранилищ мира.

Крупные водохранилища России

Самыми крупными по площади водохранилищами в России являются Куйбышевское (Самарское), Братское, Рыбинское, Волгоградское, Красноярское (входят в первую десятку мира), Цимлянское, Зейское, Вилюйское, Чебоксарское, Камское.

Куйбышевское (Самарское водохранилище), его площадь 6,5 тыс. км 2 , - это самое большое водохранилище, построенное на реке Волге в 1955-1957 годах и третье по площади водохранилище в мире. Нижнюю часть еще называют Жигулевским морем, по названию построенной вблизи Жигулевской ГЭС на Жигулевских горах вблизи города Тольятти. Название водохранилищу дал город Самара (Куйбышев с 19135 по 1991 год), расположенный вниз по течению. Основным предназначением водохранилища является производство электроэнергии, улучшение качества судоходства, водоснабжение, орошение, рыболовство...

Братское водохранилище (площадь 5,47 тыс. км 2) расположенное в Иркутской области на реке Ангаре является вторым по объему хранящейся воды водохранилищем в мире (169 м 3). Оно было построено в1961 -1967 гг. (в 1961 была поставлена плотина, до 1967 года велось наполнение водохранилища водой) в результате строительства Братской ГЭС. Названо в честь города Братска административного центра Иркутской области, построенного на его берегах. Водохранилище используют для генерирования электроэнергии, в судоходстве и промысловой добыче рыбы, для сплава древесины, водоснабжении и ирригации...

Рыбинское водохранилище площадью 4,6 тыс. км 2 , входит в состав Рыбинского гидроузла на реке Волге и её притоках Шексна и Молога на северо-западе Ярославской области, частично на территории Вологодской и Тверской областей. Строительство было начато в 1935 году на месте древнего ледникового озера, планировалось, что это будет самое крупное в мире озеро искусственного происхождения. Наполнение чаши длилось до 1947 года, для это было затоплено почти 4 тыс. км 2 окружающих лесов и было переселено население 663 поселков и деревень (133 тыс. человек) вокруг города Мологи. Водохранилище используется для работы Волжского каскада ГЭС, ловли рыбы и судоходства...

Строительство Волгоградского водохранилища длилось с 1958 по 1961 год, оно возникло при возведении плотины Волгоградской ГЭС на реке Волге (территория Саратовской и Волгоградской областей). Его площадь - 3,1 тыс. км 2 , на его берегах построены такие города как Саратов, Энгельс, Маркс, Камышин, Дубовка. Используется для производства электроэнергии, перемещения водных видов транспорта, орошения и водоснабжения...

Цимлянское водохранилище появилось после возведения плотины на реке Дон, город Цимлянск в Ростовской и Волгоградской областях (67 % площади) в 1952 году. Его заполнение длилось по 1953 год, начало строительства - 1948 год. Его площадь - 2,7 тыс. км 2 , имеет вид котловины с тремя расширениями для устьев таких рек как Чир, Аксай Курмоярский и Цимла, также помимо них сюда впадает еще 10 рек. Используется для обеспечения транзитного судоходства по Волго-Донскому каналу, орошение засушливых прилегающих земель, работа Цимлянской ГЭС. Также на берегу водохранилища функционирует Ростовская АЭС, находятся города-порты - Волгодонск, Калач-на-Дону...

Строительство Зейского водохранилища площадью 2,4 тыс. км 2 длилось с 1974 по 1980 год. Оно построено на реке Зея (Амурская область РФ) в результате возведения плотины. По объёмам хранящейся там воды (68,4 км 3) - это третье место после Братского (169 км 3) и Красноярского (73,3 км 3) водохранилищ. Здесь ведется промысловая добыча рыбы, работает Зейская ГЭС, также водохранилище регулирует сток Амура, который подвержен влиянию тихоокеанских муссонов...

Вилюйское водохранилище находится на реке Вилюй (приток Лены), оно появилось в результате возведения плотины Вилюйской ГЭС в 1961-1967 годах. Оно расположено в Якутии на границе с Иркутской областью, его площадь - 2,36 тыс. км 2 , используется с целью регулирования годового стока реки Вилюй, как источник водоснабжения, орошения, для судоходства и рыбного промысла...

Чебоксарское водохранилище на реке Волга (территория Республики Марий Эл, Чувашской Республики и Новгородской области) является частью Волго-Камского каскада ГЭС. Площадь - 2,1 тыс. км 2 , оно появилось в результате возведения плотины Чебоксарской ГЭС, строительство которой велось с 1980 по 1982 год. Используется для производства электроэнергии, рыболовства, теплоходного судоходства...

Камское водохранилище образовано на реке Каме в Пермском крае РФ при строительстве Камской ГЭС, которая вступила в эксплуатацию в 1954 году после возведения плотины. Его площадь - 1,9 тыс. км 2 , на его берегах расположена Пермская ГРЭС. Также на так называемом Камском море каждый год проходит парусная регата «Кубок Камы» - крупнейшее спортивное состязание на территории Пермского края...

Полезный объем Wплз. нетто водохранилища уточняем, имея потерю воды из водохранилища на испарение, фильтрацию и льдообразование. Для этого предварительно определяем полный объем водохранилища Wср в каждом месяце и площадь щср.

Так, полный объем водохранилища

W = Wплз. нетто + Wмо,

где Wмо - мертвый объем водохранилища.

В связи с тем, что данные о мутности воды в задании отсутствуют, мертвый объем вычисляем ориентировочно. Допустим, что

Wмо? 0.1· Wплз. = 0.1·7.484 = 0.7484 млн. м3.

Значения полного объема записываем в графу 2 табл.3.

Затем определяем средние за месяц объемы водохранилища Wср, с которым с помощью топографических характеристик находим площадь зеркала щ.

Потери на испарение вычисляем за каждый месяц по формуле

где hи - слой испарения.

Результаты вычислений заносим в графу 6 табл.3.

Потери на фильтрацию Wф в каждом месяце находим по формуле

Wф = щi·kф·ni,

где kф = 0.003 м/сут,

ni - число дней в месяце.

Результаты заносим в графу 7 табл.3.

Потери на льдообразование

Wл = 0.9·kл· hл·(щн - щк),

где 0.9 - относительный вес льда;

kл - коэффициент постепенного нарастания толщины ледяного покрова, равный примерно 0.65;

hл - среднемноголетняя толщина льда к концу ледостава;

щн и щк - площадь зеркала водохранилища в начале и конце ледостава.

Распределяем объем потерь Wл на зимние месяцы (графа 8 табл.3), а затем находим сумму потерь воды (графа 9 табл.3).

С учетом этих потерь избытки уменьшатся, а недостатки увеличатся (графы 11 и 12 табл.3), поэтому полезный объем брутто составит

Wбр = 9.578 млн. м3.

Сброс соответственно уменьшится: 16.348 млн. м3

Тогда полный объем водохранилища составит

Wполн = Wмо + Wфр + Wфр = 0.7484 + 9.578 + 0 = 10.326 млн. м3.

Характерные уровни и емкости водохранилища

Основными характеристиками водохранилищ являются:

нормальный подпорный уровень НПУ, м;

уровень мёртвого объема УМО, м;

катастрофический подпорный уровень КПУ, м;

полный объем водохранилища W, млн. м3 или км3;

полезный объем водохранилища Wплз, млн. м3 или км3;

мертвый объем водохранилища Wмо, млн. м3 или км3;

объем форсировки водохранилища Wфс, млн. м3 или км3;

коэффициент емкости водохранилища в= Wплз/Wо,

где Wо - средний многолетний сток.

НПУ - уровень воды, до которого водохранилище заполняется в нормальных условиях.

Полный объем водохранилища W - объм, заключенный между дном чаши водохранилища и зеркалом воды на отметке НПУ. Полный объем W не целиком используется для регулирования стока. Нижняя часть водохранилища, предназначенная для поддержания минимальных уровней воды и осаждения в ней наносов, называется мертвым объемом Wмо и сработке не подлежит.

Объем водохранилища, заключенный между поверхностями воды на отметках НПУ и УМО, называется полезным объемом -- Wплз. В периоды многоводья он заполняется, а в периоды маловодья опорожняется. Объем, заключенный между поверхностями воды на отметках НПУ и КПУ, называется объемом форсировки. КПУ -- катастрофически подпертый уровень в период пропуска через гидроузел исключительно многоводных половодий или паводков. Объем, форсировки Wфс служит для уменьшения величины сбросных расходов через гидроузел.

Рисунок 2. Основные элементы водохранилища

Образование водохранилища вызывает изменения в режиме водотока. В верхнем бьефе эти изменения в основном сводятся к следующему:

повышаются уровни воды и увеличиваются глубины, чтосвязано с затоплением территории в пределах чаши водохранилища;

уменьшаются скорости течения, в результате чего происходит выпадение значительной части осадков;

увеличивается водное зеркало, в связи с чем происходит увеличение испарения, что ведет к повышению солености воды в водохранилище.

В нижнем бьефе происходят такие изменения: уменьшаются половодные и паводковые расходы и увеличиваются меженние; и происходит размыв русла ниже гидроузла. Кроме указанных изменений в водотоке в верхнем бьефе происходят следующие: затопление территории в пределах чаши водохранилища; подтопление прилегающих к водохранилищу земель и обрушение берегов водохранилища под воздействием волн.

Кроме постоянного затопления земель, занятых водохранилищем в пределах НПУ, хозяйственное использование которых невозможно, наблюдаются временные затопления территории выше НПУ во время катастрофических половодий и паводков, от нагона воды ветром на берега и от подъема уровней воды при заторах и зажорах. Хозяйственное использование временно затопляемых земель возможно. При подтоплении происходит подъем грунтовых вод, что резко ухудшает условия хозяйственного использования земель и требует осушительных мероприятий.

Характерные уровни воды и их отметки находим, используя топографические характеристики водохранилища:

НПУ, соответствующий наполнению Wполн = 10.326 млн. м3, на отметке НПУ = 131.8 м плотины равен

НПУ = НПУ - ПП = 131.8 - 120.0 = 11.8 м;

Уровень мертвого объема на отметке УМО = 121.2 м равен

УМО = УМО - ПП = 121.2 - 120.0 = 1.2 м;

Форсированный подпорный уровень ФПУ равен

ФПУ = НПУ + 2.0 = 13.8 м,

где ПП - отметка подошвы плотины.

В маловодные, засушливые годы расход воды в реках уменьшается, а потребность в воде для орошения и коммунального водоснабжения возрастает. Уменьшение расхода воды влечет за собой снижение выработки электроэнергии на ГЭС, ухудшение условий водоснабжения, снижение качества воды и другие неблагоприятные последствия. Сезонные колебания стока рек характеризуются резким уменьшением расходов воды в реках зимой, когда потребность в электроэнергии обычно наибольшая; потребность в воде для промышленного водоснабжения зимой обычно не уменьшается. Летнее снижение расходов воды неблагоприятно для орошения, судоходства и других водопотребителей и водопользователей.

Для наиболее полного и экономичного использования водных ресурсов и приспособления режима водоотдачи к потребностям различных отраслей народного хозяйства производят регулирование стока водохр анилищами.

ТИПЫ ВОДОХРАНИЛИЩ

Озера являются естественными водохранилищами. В естественных условиях озеро регулирует сток без участия человека. Максимальный расход реки, вытекающей из озера, в несколько раз меньше, а минимальный намного больше суммарного притока от рек, впадающих в озеро. Если при подпоре озера плотиной повысить его уровень или произвести расчистку русла реки в ее истоке, либо осуществить оба эти мероприятия, то регулирующая способность озера возрастет и можно будет повысить сверх естественного минимальный расход реки, вытекающей из озера.

Чаще всего приходится создавать искусственные водохранилища. Для создания водохранилища в русле реки строят плотину, которая подпирает реку. При этом затапливается пойма и прилежащая территория. При проектировании и строительстве водохранилищ обязательно всесторонне изучить все положительные и отрицательные последствия сооружения водохранилищ. При их размещении необходимо всемерно уменьшать площадь затопления ценных сельскохозяйственных земель. На равнинных реках площадь затопления может оказаться весьма большой. Так, например, площадь Куйбышевского водохранилища на Волге составляет 6450 км 2. На реках равнинного типа вследствие малого уклона реки водохранилища получаются большой протяженности - до 200-300 км. При пологих берегах ширина водохранилища достигает иногда 40-50 км. На горных реках вследствие большого уклона реки и крутых берегов большой объем водохранилища может быть получен только, при большой высоте плотины, что, однако, не вызывает больших затоплений территории.

В гидроэнергетике различают водохранилища по их местоположению относительно данной гидроустановки:

1) верховые, расположенные на реке или ее притоках выше данной гидроэлектростанции;
2) собственные, т. е. образованные сооружениями, входящими в состав данной ГЭС;
3) низовые, расположенные ниже данной ГЭС.

ОБЪЕМ ВОДОХРАНИЛИЩА



Нормальным подпорным уровнем (НПУ) называют тот наивысший уровень, на который по условиям устойчивости рассчитывается нормальная работа подпорных сооружений (рис. 3-1). НПУ может поддерживаться сколь угодно длительно.

Форсированным уровнем (ФПУ) называется уровень, который может допускаться на короткое время при пропуске исключительно больших паводков или половодий, имеющих вероятность ниже расчетной, которая была принята для нормальных условий эксплуатации.

Уровень наннизшей сработки (УС) водохранилища называют уровнем мертвого объема (УМО).

Объем воды в водохранилище между НПУ и УМО называют полезным или рабочим объемом. Объем воды ниже УМО обычно не используется для регулирования стока и его называют мертвым объемом.

Полный объем водохранилища при НПУ равен сумме полезного и мертвого объемов. Между отметками НПУ и ФПУ размещается резервный объем водохранилища, который используется для приема и трансформации половодий и паводков редкой повторяемости. Сумма рабочего, резервного и мертвого объемов дают полный объем водохранилища при ФПУ. Для определения объема водохранилища по топографическим планам местности планиметрируют площади между соответствующими горизонталями и створом плотины. По этим данным строится кривая площадей F = f(Z), показывающая зависимость площади зеркала водохранилища F от высотной отметки Z. Затем для каждого приращения отметок подсчитывается приращение объема А У и строится кривая зависимости V = f (Z), которая называется статической кривой объемов водохранилища (рис. 3-2). На равнинных реках с большими расходами строятся кривые свободной поверхности воды в водохранилище. Эти кривые подпора при одинаковом уровне воды у плотины будут иметь тем большую кривизну и тем более высокий уровень воды в конце кривой подпора, чем больше расход притока (рис. 3-3). В этих случаях получают кривую динамических объемов воды в водохранилище V = f (Z, Q).



В отдельных случаях учитывается, что пористые грунты берега и ложа водохранилища при подъеме уровня воды впитывают воду и отдают ее обратно при снижении уровня воды, что равносильно увеличению фактической емкости водохранилища.

Наибольший полный объем 205 км3 и наибольшую площадь зеркала 76 тыс. км2 имеет водохранилище Оуэн-Фолс, расположенное на территории Уганды, Кении и Танзании. Крупнейшим является водохранилище на р. Вольта (Гана), полный объем которого 148 и полезный объем 90 км3. По величине полезного объема на третьем месте в мире находится водохранилище Насер на р. Нил (Египет), созданное при технической помощи СССР. В табл. 3-1 приведены данные по крупнейшим водохранилищам СССР с полезным объемом более 10 км3.

ПОТЕРИ ВОДЫ ИЗ ВОДОХРАНИЛИЩ

Потери воды из водохранилища происходят вследствие испарения, фильтрации и оседания льда на берегах при зимней сработке водохранилища. Для ГЭС оказывается «потерянной» также вода, забираемая из ее верхнего бьефа на орошение, водоснабжение, шлюзование судов и т. п.



Испарение. С созданием водохранилищ увеличивается испарение. Полные потери испарения определяются произведением площади зеркала водохранилища Fв на толщину слоя испарившейся воды hB.


Как видно из табл. 3-2, удельные потери воды на дополнительное испарение в Средней Азии в 15 раз больше, чем на севере Европейской части СССР.

Из всех водохранилищ юга Европейской части СССР потери на дополнительное испарение из водохранилищ составляют в среднем более 10 км3 в год.

Фильтрация. Различают потери, воды вследствие фильтрации через тело плотины, под нею и в обход ее через толщу грунта и через неплотности затворов плотин и направляющих аппаратов турбин.

При сработке водохранилища в зимний период лед оседает на берегах. Весной лед тает и пополняет сток воды. Но для водохранилищ годичного регулирования пополнение стока весной обычно лишь увеличивает объем холостых сбросов через плотину. Таким образом, оседание льда на берегах представляет потери для энергетики.

Различают основные и специальные виды регулирования стока.

1. Основные виды регулирования

К основным видам регулирования стока относят многолетнее, годичное, недельное и суточное.

Многолетнее регулирование позволяет в маловодные годы увеличить расход воды и выработку электроэнергии гидростанциями за счет стока многоводных лет. При многолетнем регулировании водохранилище наполняется избыточным стоком многоводных лет и опорожняется в течение ряда маловодных лет. В многолетнем регулировании заинтересованы все водопотребители и водопользователи, но для его осуществления требуется большой объем водохранилища.

Для глубокого многолетнего регулирования необходим полезный объем водохранилища, равный одному - двум среднегодовым стокам реки. Частичное многолетнее регулирование возможно уже при емкости водохранилища порядка 50 % среднегодового стока.

Годичное регулирование перераспределяет сток в течение года в соответствии с потребностями водопользователей и водопотре- бителей. В многоводные сезоны водохранилище наполняется, а в мало-водные- опорожняется. Цикл регулирования составляет один год. Потребный объем в процентах от среднегодового стока составляет от 3-10 % при частичном до 40-60 % при полном регулировании стока.

Для энергетики большое значение имеют недельное и особенно суточное регулирование, производимые в соответствии с недельными и суточными колебаниями нагрузки энергосистем.

Суточное регулирование при сравнительно постоянном притоке воды обеспечивает неравномерное потребление воды гидростанцией, следуя суточным колебаниям нагрузки энергосистемы. Необходимый объем бьефа или бассейна суточного регулирования определяется расчетом (см. § 5-2). Примерный объем составляет от 5 до 10 % от суточной, пропускной способности всех турбин ГЭС. Если на гидростанции проводится только суточное регулирование, то цикл регулирования составляет одни сутки и к концу суток уровень воды в бьефе или бассейне возвращается к исходному положению. При суточном регулировании ГЭС покрывает пики суточного графика нагрузки.

Недельное регулирование позволяет повысить мощность и выработку энергии ГЭС в рабочие дни за счет снижения используемого стока в выходные дни, когда нагрузка в энергосистеме снижается. Для недельного регулирования требуется объем водохранилища 50- 100% от суточной пропускной способности всех турбин ГЭС.

2. Специальные виды регулирования

К числу специальных видов регулирования относят:

а) Компенсирующее регулирование, которое может производиться верховым водохранилищем для того, чтобы компенсировать неравномерность притока с промежуточного водосбора между створами водохранилища и ГЭС. При малом притоке с промежуточного водосбора даются повышенные попуски из компенсирующего водохранилища и наоборот. Если при большом водохранилище имеется своя ГЭС, то можно проводить компенсирующее годичное и даже многолетнее регулирование выработки электроэнергии нескольких; ГЭС, расположенных на разных водотоках, но присоединенных к общей электрической сети. Так, водохранилище Братской ГЭС производит компенсирующее регулирование выработки энергии Енисейскими и Ангарскими гидростанциями.

б) Трансформация паводков и половодий. Если в водохранилище будет задержана пиковая часть паводка, то максимальный расход, пропускаемый через плотину, будет уменьшен. Это позволит уменьшить водосбросные сооружения гидроузла, уменьшить наводнения на реке ниже водохранилища и т. п.

в) Аварийное использование водохранилища. При аварии в энергосистеме гидростанция может быстро принять на себя дополнительную нагрузку и израсходовать из своего водохранилища специально предусмотренный запас или часть рабочего объема водо-хранилища. После ликвидации аварии дополнительно израсходованный объем восстанавливается путем снижения нагрузки ГЭС или за счет ближайшего половодья.

Методика определения полезной емкости зависит от масштабности проекта и степени ответственности сооружения, режима регулирования стока (сезонного или многолетнего) и стадии проектирования.

В данной работе примем балансовый метод для расчетного года 75% обеспеченности, то есть будем определять емкость водохранилища по разности интегральной кривой стока и водопотребления.

Для расчета используется таблица расчета исполнения водохранилища.

Табл.12. Динамика наполнения водохранилища при регулировании расчетного года

Месяцы Регулирование стока Текущие наполнения на конец интервала
+ сработка - наполнение
19,64 19,11
114,68 133,79
11,2 145,01
-16,09 128,92
-17,96 110,96
-16,07 94,89
-15,28 79,61
-14,77 64,84
-14,36 50,48
-15,1 35,38
-16,69 18,69
-18,69

Полезный объем водохранилища

Определение мёртвого объема водохранилища.

Мертвый объем водохранилища назначают из следующих соображений:

Заиление емкости водохранилища в результате отложения наносов должно произойти не раньше установленного периода (T заил = 50 лет);

В соответствии с санитарными требованиями глубина водохранилища должна быть не менее заданной отметки, которая устанавливается из условия предотвращения инфекционных заболеваний;

Недопущение полного промерзания емкости (h > 3м);

При наличии судоходства в ВБ глубина должна соответствовать требованию водного транспорта;

Так как в состав гидроузла входит ГЭС, напор, созданный при отметке МО должен обеспечивать проектную выработку электроэнергии и гарантированную мощность ГЭС.

Из всех видов емкостей выбирается максимальная.

Санитарный объем.

Принимается по величине попуска на разбавление

Объем заиления



Где S – среднемноголетний сток, S=457,27млн.м 3 ;

Мутность реки, кг/м 3 ;

r – доля влекомых насосов, r=0.04(0,05)

T заил – расчетный срок заиления водохранилища, Т заил =50лет;

– объемный вес отложений (насосов), =1100-1200кг/м 3

Требования ГЭС.

– отметка нижнего бьефа,

Для определения отметки нижнего бьефа при расходах нам необходима кривая расходов в нижнем бьефе.

Где t – среднее количество секунд в месяц, t = 2.63 млн.сек/мес;

W ГЭС i – объем воды для ГЭС за один месяц.

Следовательно, Н НБ =131,5 м

Находим объем ГЭС в верхнем бьефе

,

Для = 131,5 м получаем =113 млн.м 3

Общий обьем воды для ГЭС находим по формуле:

При получаем НПУ=168м.

Характерные емкости показаны на батиграфической кривой

Ак же наносим полный и мертвый объемы.

Уточняем площадь зеркала водохранилища при отметке НПУ =444м:

Выводы:

1. В проекте запроектирован ВХК в составе следующих участников: ГКБХ, СКБХ, промышленность, орошение, животноводство (КРС), рекреация, ТЭС, водный транспорт, рыбное хозяйство, ГЭС.

Проведен комплекс специальных водохозяйственных мероприятий по экономии водных и улучшению их качества (применили 5 методов управления):

1) Введение оборотной системы водоснабжения в промышленности;

2) Улучшение качества очистки сточных вод ГКБХ и рекреации;

3) Ограничение водопотребления в орошении и в животноводстве;

4) Снижение нагрузки на водный объект со стороны СКБХ, животноводства и орошения;

5) Повторное использование сточных вод животноводства на орошение;

6) Переброска части стока из смежного бассейна реки.

В результате расчетов ВХБ = 0,53 млн. м 3 . При этом снята необходимость многолетнего регулирования стока.

2. При расчете ВХБ в месячных интервалах времени наблюдаются дефициты воды в отдельные месяцы года (1,2,6,7,8,9,10,11,12), а в остальные месяцы (3,4,5) наблюдаются избытки воды.

3. Запроектировано водохранилище сезонного регулирования для снятия внутригодовых дефицитов водных ресурсов и повышения водообеспеченности с учетом санитарно-экологических требований.

4. В составе гидроузла предусмотрено водохранилище объемом W полн =179,9 млн. м 3 при отметке НПУ = 168 м, земляная плотина, высотой Н плот = 38 м, с открытым береговым водосбором и здание ГЭС руслового типа.

Список используемой литературы:

1. Комплексное использование и охрана природы. Под ред. В.В. Шабанова. – М.: Колос,1994.

2. Маркин В.Н., Раткович Л.Д., Соколова С.А. Разработка водохозяйственных мероприятий в бассейне реки. – М.: МГУП, 2011. 100 с.

3. Практикум по инженерной гидрологии и регулированию стока. Под ред. Е.Е. Овчарова. – М.: Колос, 1996.

4. Мелиорация и водное хозяйство. Т. 5. Водное хозяйство: Справочник / Под ред. Бородавченко И.И., - М.: Агропромиздат, 1988.



Loading...Loading...